gráficos que se ocupan en el
control de calidad
|
Los gráficos de control fueron propuesto originalmente por
W. Stewart en 1920, y en ellos se representa a lo largo del tiempo el estado
del proceso que estamos monitorizando. En el eje horizontal X se indica el
tiempo, mientras que el eje vertical Y se representa algún indicador de la
variable cuya calidad se mide. Además se incluye otras dos líneas horizontales:
los límites superior e inferior de control, escogidos éstos de tal forma que la
probabilidad de que una observación esté fuera de esos límites sea muy baja si
el proceso está en estado de control, habitualmente inferior a 0.01.
En cualquier proceso, incluida la prestación de servicios
sanitarios, se produce variabilidad. Por ejemplo incluso en situaciones muy
similares no todas las cirugías resultan exitosas, no todas las consultas duran
el mismo tiempo, etc. En cada caso el origen de esa variabilidad puede ser muy
diverso, por un lado tenemos causas impredecibles, de origen desconocido, y por
tanto en principio inevitables, y por otro lado, causas previsibles debidas a
factores humanos, a los instrumentos o a la organización. Estudiando
meticulosamente cualquier proceso es posible eliminar las causas asignables, de
tal forma que la variabilidad todavía presente en los resultados sea debida
únicamente a causas no asignables; momento éste en el que diremos que el
proceso se encuentra en estado de control.
La finalidad de los gráficos de control es por tanto
monitorizar dicha situación para controlar su buen funcionamiento, y detectar
rápidamente cualquier anomalía respecto al patrón correcto, puesto que ningún
proceso se encuentra espontáneamente en ese estado de control, y conseguir
llegar a él supone un éxito, así como mantenerlo; ése es el objetivo del
control de calidad de procesos, y su consecución y mantenimiento exige un
esfuerzo sistemático, en primer lugar para eliminar las causas asignables y en
segundo para mantenerlo dentro de los estándares de calidad fijados.
Así pues el control estadístico de calidad tiene como
objetivo monitorizar de forma continua, mediante técnicas estadísticas, la
estabilidad del proceso, y mediante los gráficos de control este análisis se
efectúa de forma visual, representando la variabilidad de las mediciones para
detectar la presencia de un exceso de variabilidad no esperable por puro azar,
y probablemente atribuible a alguna causa específica que se podrá investigar y
corregir.
El interés de los gráficos de control radica en que son
fáciles de usar e interpretar, tanto por el personal encargado de los procesos
como por la dirección de éstos, y lo que es más importante: la utilización de
criterios estadísticos permite que las decisiones se basen en hechos y no en
intuiciones o en apreciaciones subjetivas que tantas veces resultan desgraciadamente
falsas.
A la hora de analizar los datos en un proceso de control
calidad tenemos que diferenciar tres casos según la característica medida:
La variable es medible numéricamente, por ejemplo un tiempo.
Se estudia un atributo o característica cualitativa que el
proceso posee o no posee, por ejemplo el paciente cumple o no cumple
adecuadamente el tratamiento
Se cuenta el número de defectos en el producto o situaciones
inadecuadas en la prestación del servicio
Vamos en primer lugar a presentar los gráficos de control
para variables cuantitativas. En este caso se puede representar la evolución de
un valor medio, como puede ser la media o la mediana, o representar un
indicador de dispersión como puede ser el rango o la desviación típica. Cuando no
se va a utilizar un programa específico se suele preferir el rango a la
desviación típica, por ser mucho más fácil de calcular. Existen otros tipos de
gráfico más especializados, que comentaremos más adelante.
Gráfico de control
para variables cuantitativas
Veamos cómo se construye un gráfico de evolución de medias.
En primer lugar, para cada instante de tiempo se tomará una
pequeña muestra (por ejemplo diariamente). En control de calidad se usa
habitualmente muestras pequeñas de tamaño de entre 5 a 10 elementos, tomadas a
lo largo de un tiempo representativo, normalmente de 20 a 30 ocasiones.
Veamos un sencillo ejemplo, en el que durante 24 días se han
anotado 5 observaciones.
Tabla 1
Nº Dato 1 Dato 2 Dato
3 Dato 4 Dato
5
1 10.7 10.7 10.7 10.7 10.9
2 10.8 10.9 10.8 10.9 10.7
3 10.8 10.8 10.8 10.7 10.8
4 10.6 10.7 10.7 10.8 10.7
5 10.7 10.8 10.7 10.9 10.8
6 10.6 10.8 10.8 10.9 10.7
7 10.6 10.8 10.7 10.8 10.8
8 10.6 10.8 10.7 10.8 10.7
9 10.7 10.8 10.9 10.9 10.8
10 10.6 10.7 10.6 10.8 10.7
11 10.8 10.8 10.9 10.5 10.9
12 10.9 10.8 10.9 10.7 10.7
13 10.7 10.7 10.8 10.8 10.7
14 10.7 10.7 10.9 10.8 10.6
15 10.8 10.8 10.8 10.8 10.7
16 10.9 10.8 10.8 10.8 10.9
17 10.8 10.7 10.9 10.7 10.8
18 10.8 10.7 10.6 10.7 10.6
19 10.7 10.7 10.9 10.7 10.7
20 10.6 10.6 10.7 10.6 10.7
21 10.5 10.0 10.7 10.8 10.8
22 10.8 10.7 10.8 10.7 10.7
23 10.7 10.6 10.7 10.6 10.7
24 10.7 10.7 10.7 10.6 10.7
Para elaborar el gráfico de evolución de medias, en primer
lugar se calcula la media de cada muestra de 5 observaciones y luego la media
global de esas 24 medias. Seguidamente se calcula los rangos para cada muestra
(valor máximo - valor mínimo), así como la media de los 24 rangos.
Para el cálculo de los límites de control se utiliza la
teoría de probabilidades, suponiendo que los datos siguen una determinada
distribución de probabilidad, ya sea ésta normal, binomial, Poisson o
cualquiera otra, dependiendo del tipo de datos analizado. De esta forma se
determinará un factor que al multiplicarlo por un parámetro de variabilidad
(sea éste el rango o la desviación típica) nos permite calcular los límites del
gráfico de control de calidad, límites que nos garantizan una probabilidad del
99 % de que las observaciones se encuentren dentro de esos márgenes si el
proceso está en estado de control. Es un concepto totalmente análogo al de
intervalo de confianza para una estimación, al que estamos habituados en la
inferencia estadística.
En general no será necesario realizar los cálculos
concretos, ya que si no se dispone de un programa al efecto siempre se puede
acudir a cualquier libro de control de calidad, donde encontraremos tabulados
los valores a aplicar, de forma similar a como se presentan en la tabla 2.
Los límites de calidad superior e inferior para un gráfico
de medias se calculan de acuerdo a las siguientes fórmulas:
LCSm=M+A2R
LCIm=M-A2R
donde M es la media global (media de todas las medias) y R
es la media de todos los rangos.
Representado en un gráfico las 24 medias de las muestras de
tamaño 5 de la tabla 1, una línea horizontal correspondiente a la media global,
y dos líneas horizontales correspondientes a los límites de calidad obtenemos
un gráfico como el de la figura 1
Gráfico de evolución de medias
Fig. 1 Gráfico de control para la evolución de medias
Tabla 2. Factores para límites de control en gráficos de medias
y rangos
Gráfico de medias Gráfico
de Rangos
Tamaño de muestra n Factor
A2 Factor D3 Factor D4
2 1.88 0 3.27
3 1.02 0 2.57
4 0.73 0 2.28
5 0.58 0 2.11
6 0.48 0 2.00
7 0.42 0.08 1.92
8 0.37 0.14 1.86
9 0.34 0.18 1.82
10 0.31 0.22 1.78
De igual forma se puede construir un gráfico de control para
la evolución del Rango. En este caso los límites de control vienen dados por
las fórmulas:
LCSR=D4R
LCIR=D4R
donde D4 se obtiene de la tabla 2, y como antes R es el
rango medio.
Gráfico de control
para atributos
Cuando la variable que se analiza solo puede tomar dos
valores, no o sí, correcto o incorrecto, adecuado o inadecuado, se habla de
control por atributos. Ahora las muestras han de ser necesariamente mayores que
cuando se analizan variables medibles, y habitualmente se utilizará un gráfico
de proporciones, en el que la variable a representar en el eje de las Y es la
proporción de veces en que el resultado no es adecuado. También aquí se
recogerán de 20 a 30 muestras de tamaño suficiente para que se observe en cada
una alguno de los resultados defectuosos, lo que hace que el tamaño de muestra
necesario sea tanto mayor cuanto menor sea dicha proporción. Si el tamaño n de
todas las muestras es el mismo y llamamos P a la media de todas las
proporciones, sabemos que se puede estimar la desviación típica mediante la
siguiente fórmula
De tal manera que los límites de control vienen dados ahora
por las siguientes fórmulas
LCSP=P+3sp
LCIP=P-3sp
En el caso de que los tamaños de cada muestra difieran,
también lo hace el valor de la desviación típica, de tal manera que para cada
porcentaje representado en la gráfica varían los límites de control, los cuales
no serán ya una línea horizontal sino una línea escalonada.
Interpretación de
los gráficos de control
El objetivo de los gráficos de control es determinar de
forma visual y por tanto sencilla cuándo un proceso se encuentra fuera de
control, con una probabilidad de error pequeña.
La primera indicación de que el proceso puede estar fuera de
control viene dada por la presencia de algún punto fuera de los límites de
control, como pasa con los datos correspondientes a la muestra 21 en la figura
1.
Para facilitar la detección de patrones anómalos o poco
probables en un proceso en estado de control, conviene dividir en tres zonas de
igual tamaño el área situada a ambos lados de la línea central, entre ésta y
los límites de control, como vemos en la siguiente figura:
Gráfico de control
Fig.2 Gráfico de control con zonas intermedias
Si en el gráfico se está utilizando la desviación típica
para calcular los límites de control, estas zonas corresponden a 1, 2 y 3
desviaciones típicas, que hemos marcado en la figura como A, B y C
respectivamente.
Otra posible señal de que el proceso está fuera de control
se da cuando aparecen un elevado número de puntos consecutivos al mismo lado de
la línea central: si nos encontramos 8 puntos seguidos al mismo lado de la
línea central, o 10 puntos de 11, o 12 de 14.
Cualquier tratado sobre implantación de procesos de calidad
presenta una serie de reglas caseras para detectar diferentes series de datos
improbables. Además de las dos anteriores destacamos las siguientes:
2 de 3 puntos seguidos en la zona C
4 de 5 puntos seguidos en la zona B o más allá (como vemos
que pasa en la figura 2 en los puntos marcados en rojo)
6 puntos seguidos ascendentes o descendentes
8 puntos seguidos fuera de la zona A, a ambos lados de la
línea central
En cualquier caso siempre hay que estar atento a la
presencia de patrones o tendencias en los gráficos de control.
Estas
reglas pueden ser incluso más restrictivas (alerta para un nivel de
probabilidad más bajo), si así lo requiere el proceso que se controla. Así por
ejemplo en el mundo del control de calidad para los laboratorios de análisis
clínicos son muy conocidas las denominadas reglas de Westgard, que no son más
que una adaptación concreta de los razonamientos expuestos al control de
calidad para un analizador del laboratorio, aparato en el que diariamente se
efectuarán muestras de control de calidad para verificar que está funcionando
adecuadamente. Los resultados obtenidos en estas muestras se representan en un
gráfico de control como los ya descritos, aunque en ese entorno se conocen como
gráfico de Levey-Jennings, y se aplican una serie de reglas probabilísticas de
decisión en las que existen dos niveles: un nivel de alerta y un nivel de
rechazo. Así una observación en la zona C o por encima supone una alerta y
fuera de la zona de control, por encima de los límites de control obliga a
rechazar los análisis efectuados.
No hay comentarios.:
Publicar un comentario